
Model-Driven 
System Performance
Engineering

Target group High Tech industry

Contact Bram van der Sanden

Twan Basten

Address High Tech Campus 25

 5656 AE Eindhoven

 The Netherlands

Phone +31 (0)88 866 54 20

E-mail bram.vandersanden@

tno.nl

twan.basten@tno.nl

 

Information www.esi.nl

ESI programs bring together industrial and academic partners, literally using industry
as a lab. The system performance program targets the development of industrially
mature, domain-specific model-driven system performance engineering methods
based on the latest academic results.
 

Opportunity
System performance often brings the competitive advantage for high-tech 
cyber-physical systems like semiconductor equipment, production printers,
analytical instruments, and medical equipment. To meet market demands for
product quality, product customization, and a low total cost of ownership,
systems need to meet ever more ambitious performance targets relating to
system productivity. Performance is a cross-cutting system-level concern, with
intricate relations to other system-level concerns like product quality, cost,
reliability, and customizability.
 

1



Powered by industry, academia and TNO

Designing for performance implies that system performance is
a first-class citizen integrally taken into account during the entire
system life cycle. Model-driven system performance
engineering (MD-SysPE) is essential to make the right design
decisions during early stages of system development and to
optimize performance during system operation. Early insight in
system performance improves time-to-quality by requiring less
rework in later stages of development. Designing for
performance improves the cost-performance ratio of the final
product by minimizing system over-dimensioning. It also enables
a wider range of system variants and operating conditions by
considering the system variability and context during design and
operation.
 

Industrial challenges
Eight industrial challenges motivate the importance of MD-SysPE:
1. Performance analysis during early development 
2. System-level modeling and reasoning 
3. System performance (de)composition 
4. System variability 
5. Runtime management 
6. Methodology: languages, techniques, methods, tools 
7. Traceability
8. Data

 
Performance problems often only materialize late in the system
lifecycle, typically during integration or system operation. To
prevent costly rework and avoid performance degradations, 
performance analysis is needed during early system
development. System-level modeling and reasoning at the
right abstraction level needs to support reasoning on
performance and the trade-offs with other KPIs. Given a system
architecture and system-level performance requirements, an
important challenge is how to decompose system performance
to component-level budgets and identify the impact on
performance of different possible decompositions.
 
Systems are typically no longer designed individually. They evolve
over time and are part of product families. It is not feasible to
develop, evaluate, and test variants individually. It is a challenge
to deal with system variability in relation to performance, to
create the right modular platform with re-usable components,
and to assess how design choices on shared components impact
specific system variants. Runtime management is needed to
recognize and react to both anticipated and unanticipated
operating conditions, to ensure optimal system performance
under varying circumstances. 

Industrially-usable methodologies consisting of coherent sets
of languages, techniques, methods, and tools are needed to
specify, model and analyze performance, covering all aspects of
all disciplines relevant for system performance, including for
instance software, mechanics, and electronics. Traceability of
performance relations across levels of abstraction, across system
components, and across disciplines is needed to reason on the
impact of design decisions on performance and to diagnose the
root-cause of performance problems. Data plays a crucial role in
both the design and diagnostics of systems. A key challenge lies
in getting the right data with proper instrumentation of the
system, while ensuring minimal impact on system performance.
 

Focus areas
ESI advocates MD-SysPE at system level throughout the whole
system life cycle to address the identified industrial challenges.
We develop domain-specific conceptual modeling techniques to
capture all relevant aspects across all disciplines in a particular
domain. We link performance models to analysis, synthesis,
scheduling, and control techniques that enable automated
reasoning about the impact of design choices on system
performance, constructive design-space exploration, and on-line
performance optimization. We collect data during system
operation to provide feedback on the design.
 
Our MD-SysPE approach identifies five focus areas that together
cover the full system life cycle and one cross-cutting focus area
on methods and tool support:
1. Performance architecting
2. Model-driven design-space exploration
3. Performance modeling and analysis
4. Scheduling and supervisory control
5. Data-driven analysis and design (including data collection

and model learning)
6. Tool-supported MD-SysPE methods

 
 
 
 
 
 
 
 
 
 
 
Figure 1: Focus areas positioned on a system development process
 
 
 
 
 
 
 

 

 

 

 

System performance: the amount of useful work
done by a system - measured in production speed
of products of a predefined quality.

2



Powered by industry, academia and TNO

 
 
 
 
 
 
 
 
Figure 2: System life cycle with a positioning of the focus areas
 
Figure 1 shows a positioning of the focus areas in a typical
V-model development process. While the system is in operation,
incremental development iterations may be performed to update
the system or to adapt it to specific operating conditions, as
illustrated by the small V-development iterations at the right.
Figure 2 positions the focus areas in the system life cycle,
emphasizing the feedback cycles from system operation to
improve system performance. Together, the figures show how
the focus areas cover all aspects of system development and
system operation that are relevant for MD-SysPE.
 
Designing for performance starts with performance
architecting, to determine the performance aspects that need to
be considered during the system life cycle, to balance those with
other system-level concerns, and to ensure that the system
architecture fits with the performance requirements.
 
In the early design phases, model-driven 
design-space exploration (DSE) is performed to explore
trade-offs and find optimal designs within the given system
architecture. Exploration is model-driven, at a high abstraction
level, following pre-defined patterns to systematically cope with
complexity. Performance modeling and analysis techniques
are used to capture and analyze the performance of specific
system configurations. Techniques are targeted to the type of
systems and performance requirements at hand, ranging from
analytical modeling and reasoning about performance bounds to
discrete-event simulation and stochastic reasoning about
expected performance.
 
Scheduling and supervisory control techniques are essential to
achieve the required performance during system operation.
Schedulers and control strategies need to be designed during
system development. Scheduling and control may then be
optimized during system operation when the full operating
conditions and all system inputs are known. Such on-line
computations need to be done within strict time budgets and
with the often limited processing resources available during
system operation.
 
 

Accurate models are essential for all the activities mentioned. 
Data-driven analysis and design techniques enable model
validation, model calibration, and model learning. Operational
data can be used for monitoring performance targets during
system operation, for diagnosing unexpected performance
degradations, for development of system updates, and for
system (re-)design. Selecting the right data to be collected and
lightweight, non-intrusive system instrumentation are essential. 
 
The five focus areas discussed so far provide the basic
techniques needed for MD-SysPE. These techniques need to be
integrated in mature industrially-usable tool-supported
MD-SysPE methods, that cover all relevant disciplines and the
full system life cycle.
 

Best practices
For the first five focus areas, we identified and developed best
practices to address the challenges mentioned earlier.
 
Performance architecting
In architecting, it is important to include a performance view in
reference architectures as architectural choices can have a
significant impact on achievable system performance.
Architecting commonly distinguishes between artifacts, domain
models, and aspect models. Artifacts, such as documentation,
code, and system data, describe the current system. Domain
models generalize the essential domain concepts and their
inter-relations beyond the scope of specific systems to the
domain at hand, covering all relevant disciplines. The domain
models link to aspect models that enable analysis of particular
aspects of design alternatives. For performance architecting, 
domain and aspect models make performance aspects
explicit.
 
Platform-based design and budget-based design form a basis
for first-order system decomposition. Platform-based design
targets the development of re-usable components, subsystems,
and technology (comprehensively referred to as platforms).
Budget-based design aims to budget critical aspects, including
performance, and resources in a design. When integrated in a
model-driven design flow, e.g., through virtual prototypes,
platforms and budgeting help to speed up the development
process, to better evaluate project risks, and to obtain better
design trade-offs that explicitly consider performance during
early design.

3



Powered by industry, academia and TNO

 
 
 
 
 
 
 
 
 
 
 
Figure 3: Y-chart paradigm
 
Model-driven DSE 
Model-based DSE is the process of iterative model-based
prediction and validation of the performance of design
alternatives, to obtain feedback to the development process.
Model-based DSE is a step towards model-driven DSE, in which
models drive the development process and are the single source
of truth. Model-driven DSE uses virtual prototypes for
performance prediction and exploration. In the development of
system variants or product families, DSE follows the 
predict-the-past, explore-the-future paradigm. The past is
predicted by creating aspect models of existing systems or
system components, calibrated or validated with measurements.
This gives prediction accuracy and builds trust. To explore the
future, performance aspects of design alternatives can be
analyzed with models adapted to these design alternatives.
 
To facilitate effective and efficient DSE, it is important to separate
concerns regarding system functionality and implementation
aspects. The Y-chart paradigm proposes to model application
functionality and the implementation platform as separate
elements, with an explicit mapping between them. This allows to
easily vary functionality, platform resources, and mapping
choices and analyze the performance impact of these choices.
 
Performance modeling and analysis
Performance modeling is typically done using a combination of
knowledge-driven and data-driven modeling. Knowledge-driven
modeling builds on expert knowledge of domain specialists. 
Data-driven modeling creates models through regression or
model learning from data collected from prototypes, tests, or
system operation. We strive for models with rigorous
mathematical foundations, such as max-plus linear systems in
LSAT (https://lsat.esi.nl) or timed stochastic decision processes in
POOSL (https://poosl.esi.nl).

Performance analysis can be done by discrete-event simulation
(e.g. in POOSL), to analyze specific system behaviors, by 
analytical analysis (e.g. in LSAT), to derive performance bounds,
or by model checking, to exhaustively verify performance
properties on a system model. The latter can effectively be used,
for instance, on execution or model traces (Gantt charts) built
from actions, events, and signals, as done for example in TRACE
(https://trace.esi.nl).
 
Scheduling and supervisory control
Supervisory controllers and schedulers need to realize correct
system operation optimizing performance in relation to other
system-level concerns like product quality, reliability, or cost.
Based on models of system behavior, (template code
for) schedulers and controllers can be synthesized. Those
schedulers and controllers should optimize performance at
runtime, for varying system configurations and operating
conditions. They should preferably guarantee performance by
construction. For instance, a scheduler may guarantee a
minimum productivity under varying operating conditions. Or a
controller can minimize energy usage at runtime taking into
account operational information on energy usage while ensuring
that the expected number of missed deadlines does not exceed a
threshold of 2%. 
 
Data-driven analysis and design 
With the availability of large quantities of data and computing
power, data-driven modeling, analysis, scheduling, and control
complement their knowledge-based counterparts. Operational
data may be used to improve system performance. It is essential
to collect the right data via lightweight, non-intrusive system
instrumentation and timing measurements. It is important to 
ensure timing accuracy (e.g., via clock synchronization) and to
consider storage and bandwidth limitations that determine
whether the required data can be collected in a real-time manner
or not. Operational data can be related to models through 
model validation and calibration, model learning, or digital
twinning, balancing knowledge-driven and data-driven
design approaches.
 

Benefits
MD-SysPE provides insight in system performance, supports
well-founded design decisions, and enables performance
optimization during system design and operation. The identified
best practices improve time-to-quality and cost-performance
ratio of systems and enlarge their productive operating range.

4
Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

