Systems Engineering Research Center (SERC) A unique DoD UARC developing a Systems Research Network

Digital Engineering Research

September 2020

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. The SERC is a federally funded University Affiliated Research Center (UARC) managed by Stevens Institute of Technology consisting of a collaborative network of over 20 universities. More information is available at <u>www.SERCuarc.org</u>

For SERC Use Only

The Systems Research and Impact Network

Where is DE on the Gartner Hype Cycle?

Digital Engineering Roadmap – the Enabler

Aspirational High-level Research Vision, facilitated by Digital Engineering

Enabling Concepts – Not an Exhaustive List

• Descriptive models

- They have a formal syntax and semantics reflected with a graphical language
- They represent Structure, Behavior, Interfaces, Requirements and related Interactions
- They can characterize different levels of abstraction Mission, System, Subsystem where different types of methods usually apply
- They can generate "documents/specifications" based on stakeholder-relevant views
- Modeling Methods and Methodology
- Ontologies and Semantic Technologies enabler for interoperable AST
 - Provides a means to link data across all domain (like the Internet)
 - Provides semantics to support Knowledge Representation, which is an enabler for AI
 - Interoperability and Integration Framework (IOIF)
- Enabling Digital Engineering Environment
- Multi-Disciplinary Design Analysis and Optimization
 - Enabling Technologies for Tradespace Analysis
- Modeling Pattern (s) characterizes "integrated" interplay of three related aspects
 - Target system (Sub-System 1)
 - "Designing" system processes, methods, models, tools and computing infrastructure (Sub-System 2)
 - Model of the Target system is actually part of System 2
 - "Evolving" system encapsulates both Target and "Designing" system (System 3)
 - There are continuous dynamics that influence all three systems

- It has a documented business strategy for use of models/digital artifacts and top-down executive level support for Digital Engineering transformation
- It has established a "tech stack" for a Collaborative Integrated Modeling Environment (IME) and the associated Authoritative Source of Truth (AST)
 - Well defined model management processes. This includes methods, methodologies, tools and licenses, a model curation activity, and model exchange practices
 - Established model quality assurance (validation, issue tracking, and improvement)
 - Established means for linking descriptive system models with discipline specific models
 - Established procedures in place for conducting model and modeling reviews directly in the IME and AST across disciplines and across customers/suppliers
 - Established means for generating stakeholder role-specific views directly from the AST
- Established policies and procedures for using models/digital artifacts for contracting and contract deliverables (including procedures for dealing with data rights and IP rights)
- Established workforce development based on modeling methods using case studies in business relevant domains of interest

Reference Architecture for an IME in support of Digital Engineering

For SERC Use Only

EXAMPLE Reference Architecture "Full Stack"

For SERC Use Only Distribution Statement A: Approved for public release. Distribution is unlimited.

Digital Signoff Are Placed in View Hierarchy With Model Artifacts that Should be Exposed

Leverage Capabilities of OpenMBEE as Part of Integrated Modeling Environment

Model Development Kit/DocGen View and Viewpoint Hierarchy

Summary DE Success Measures Framework

Models are used to inform enterprise and program decision making	an enduring, authoritative arce of truth is sed over the lifecycle	Use technole innovatior improve engineeri practice	ogical n to e ng s	Infrastructure and environments support improved communication and collaboration	Transform culture and workforce engineering across the lifecycle	
Quality: • Reduce Errors/Defects • Improve System Quality • Improve Traceability • Reduce Cost			 Knowledge Transfer: Better access to information Better communication/ info sharing Collaboration 			
 Velocity/Agility: More Reuse Improve Consistency Increase Efficiency Support Integration Reduce Time 		ser Exper anage Con proved Synderstandi utomation	ience: mplexit /stem ing	Add • Methods/F • Roles/Skil • Training/T • Leadershil • Change M	Adoption: • Methods/Processes • Roles/Skills • Training/Tools • Leadership support • Change Mgmt Process	
	• Resource	• Resources				

INCOSE Model-Based Capabilities Matrix

Released January 2020 by INCOSE

INCOSE Model-Based Capabilities Matrix and User's Guide

Version 1.0, January 2020

Framework for assessing organizational maturity

Model-Based									
Capability Stages	Stage 0	Stage 1	Stage 2	Stage 3	Stage 4				
Tools & IT Infrastructure									
Collaboration	E-mail, telecom.	System Model File Exchange.	Various organizations working on different parts of model. Full model integrated by a single organizations.	Partial On-line, real-time collaboration amongst distributed teams	On-line, real-time collaboration amongst distributed teams				
Disparate Database/Tool interoperability	None	Tool-to-Tool, ad hoc interoperability	Partial Federated Database Management System (FDBMS)	Main tools interoperable. Supporting tools interact through file transfer.	Fully Federated w/ standard "plug-and-play" interfaces. Data is interchanged among tools				
Inter Database/Teel	Databases/to	Inter- Database/Tool Data Item	Inter-Database/Tool Data	Inter-Database/Tool Data Item associations among all data items defined,	Inter-Database/Tool Data Item associations among all data items defined, captured, managed, and traceable where changes in one data source				
Data Item Associations	independent	defined	captured, managed	traceable	sources of intended updates				
User IF, Viewpoint/Views	N/A	Doc Gen	UI draws from Model app	UI draws from multiple models/DBs	UI supports Interrogation; multiple configs				

ABOUT SERC PEOPLE RESEARCH EDUCATION LIBRARY NEWS AND EVENTS

Download Results

RESULTS OF THE SERC | INCOSE | NDIA MBSE MATURITY SURVEY ARE IN

June 10, 2020

https://sercuarc.org/results-of-the-sercincose-ndia-mbse-maturity-survey-are-in/

 Hindow Interpret: The Notes in School of Notestage Galability Interpret: School of Notestage Hannes Notesta Machines, Netly College, 2019 March 2019 Weight Park: Angewich March Networks Margani National School of Notestage Weight Park: Angewich March Networks Margani National School of Notestage Margani National School of No June 8, 2020 – Summary Report Task Order WRT-1001: Digital Engineering Metrics Supporting Technical Report SERC-2020-SR-003 View the DE Metrics Summary Report (June 8, 2020)

March 19, 2020 — Benchmarking the Benefits and Current Maturity of Model-Based Systems Engineering across the Enterprise Results of the MBSE Maturity Survey / Part 1: Executive Summary

View the SERC-2020-SR-001 report on the results of the MBSE Maturity Survey

June 8, 2020 – Task Order WRT-1001: Digital Engineering Metrics Technical Report SERC-2020-TR-002 View the Digital Engineering Metrics Full Technical Report

SYSTEMS ENGINEERING Survey Results linking Critical Skills to transformation

There are 5 competency groups and 22 competencies identified for the DECF

SYSTEMSComparing Obstacles vs. Enablers vs. Changes

Obstacles, Enablers, Changes:

linking leadership and metrics to transformation

Standard DE Methodology for Designing Safety/Security into a Mission/Systems Model

- System design for **Resilient Modes**: distinct and separate methods of operation of a component, device, or system based upon common resilience design patterns such as diverse redundancy.
- System monitoring via a **Sentinel** design: another design pattern responsible for monitoring and reconfiguration of a system using available Resilient Modes.

SERC has demonstrated the effectiveness of these patterns in live red team testing of UAVs, Automobiles, 3D printers, and Military armament

Mission Aware Standard MBSE Meta-Model

MISSION AWARE

CSRM Steps:

- 1. System Description
 - Component, Link
 - Function, Exit, Resource, Call Structure, Control Action, Feedback, Context
- 2. Risk Analysis
 - Loss, Hazard, Unsafe Action
- 3. Resilience Solutions
 - Resilient Mode
- 4. Cyber Vulnerability Assessment
 - Loss Scenario, Attack Vector
- 5. Iterate Resilience Solutions (Metrics)
- 6. Iterate Vulnerability Assessment

https://github.com/coordinated-systems-lab/ma-mbse-metamodel

Questions and Discussion

